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Mammography is successfully used as an effective screening tool for cancer diagnosis. A calcification cluster on mam-
mography is a primary sign of cancer. Early researches have proved the diagnostic value of the calcification, yet their
performance is highly dependent on handcrafted image descriptors. Characterizing the calcification mammography in an
automatic and robust way remains a challenge. In this paper, the calcification was characterized by descriptors obtained
from deep learning and handcrafted descriptors. We compared the performances of different image feature sets on digital
mammograms. (e feature sets included the deep features alone, the handcrafted features, their combination, and
the filtered deep features. Experimental results have demonstrated that the deep features outperform handcrafted features,
but the handcrafted features can provide complementary information for deep features. We achieved a classification
precision of 89.32% and sensitivity of 86.89% using the filtered deep features, which is the best performance among all the
feature sets.

1. Introduction

Breast cancer is the most common cancer affecting women’s
health. Early detection of breast cancer has been shown to
increase the survival rate, thereby significantly increasing
patients’ lifespan [1]. Mammography is a very popular
noninvasive imaging tool with low cost compared with other
advanced equipment, such as computed tomography. It is
widely used to diagnose breast disease at an early stage due to
its high sensitivity. (erefore, it is frequently used as a tool
for early screening.

During mammography screening, the presence of breast
microcalcifications (MCs) is a primary risk factor for breast
cancer. Breast calcifications in the early stages of breast
cancer appear like scattered spots in the mammographic
image that range from 0.1 to 1.0mm in size [2]. Previous

studies have found that MCs associated with malignant
lesions tend to be smaller in size, greater in amount, and are
more densely distributed since they occur within the milk
ducts and other associated structures in the breast and follow
the ductal anatomy [3]. Because a high correlation has been
observed between the appearance of calcification clusters
and pathology results, the MCs provide a standard and
effective way for the automated detection of breast tumors.

Besides, large-scale genome-wide association studies
(GWAS) have proved to be a strong support for identifying
disease risk pathways [4]. Experimental results provide
clinically useful clues about the link between these risk genes
and MS susceptibility in the Chinese population. (e study
of [5] demonstrates convincingly that the genetic pre-
disposition for development of AD is rooted in the immune
system, rather than in neuronal cells in some degree.
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Traditionally, radiomics diagnosis systems consider the
mammographic diagnosis to be a pattern recognition and
classification problem. (erefore, classical image processing
and machine learning techniques were combined to dis-
criminate the suspicious MCs and differentiate their types.
Generally, a standard diagnosis system consists of image
segmentation and feature extraction for calcification and
classification [6]. (e feature extraction aims to characterize
calcification with quantitative descriptors. (e popular
features include low-order statistics, such as shape [2, 7], and
high-order statistics, such as morphological [8] and texture
features [9]. However, because of the large homogeneous
condition of breast cancer and various image settings, few
universally reliable and robust imaging features have been
reported to perform equally well on different mammography
datasets. In addition, there are other pitfalls within tradi-
tional approaches. For example, there is no causal re-
lationship between the classification model and manually
extracted features. In some images, morphological features
cannot be acquired when the calcification of interest only
occupies a few pixels.

Recently, deep learning models with the convolutional
neural network (CNN) have gained wide attention because
of their efficiency in obtaining automatic informative feature
representation and high accuracy by unifying the classifi-
cation and feature representations as a whole. It has been
successfully evaluated in medical image analyses [10]. For
example, previous studies have used a hybrid CNN to
achieve high mass and pathologic classification [11, 12]. In
addition, a convolutional sparse autoencoder has been
previously employed to form a CNN, which obtained good
results in breast density segmentation for mammography
risk scoring [13].

Inspired by the promising applications of deep learning
models inmedical image diagnosis, one popular CNNmodel
was tailored to provide an automatic and comprehensive
characterization of MCs, resulting in a deep feature repre-
sentation. For comparison, traditional manual image de-
scriptors were used to extract handcrafted features. To
further exploit the merits of both types of feature charac-
terization, we use two methods to achieve it. One is the
combination of deep features and handcrafted features, and
the other is a novel feature selection strategy using the
proposed CNN structure to achieve full usage of the tra-
ditional descriptor.

(e major contributions of our work are as follows:

(1) We proposed a fully automatic pipeline to detect,
analysis, and classify microcalcification on an em-
pirical mammography dataset. (e tested dataset
contains 990 images. All images are confirmed with
biopsy to have the lesion types.

(2) We applied both handcrafted and deep learning-
extracted image features to compare their perfor-
mances. To exploit themerits of the twomethods, the
two types of features were also fused together to
enhance the classification performances.

(3) We achieved high accuracy of classification on the
dataset.

2. Literature Review

(e prognostic decision on the type of microcalcification
clusters was mainly focusing on extracting informative
handcrafted features and then building a highly discrimi-
native classier on it. In [14], the author classified clustered
microcalcifications (MCCs) as benign or malignant using a
set of wavelet features, and the classifiers were used, namely,
Artificial Neural Network (ANN) and SVM. In [15], the
authors performed the microcalcification characterization
using morphologic features which can be used to feed a
neuro-fuzzy system to classify the detected breast micro-
calcifications into benign and malignant classes. Kooi et al.
[12] used textural features and interest points or corners to
train a random forest classifier to achieve microcalcifications
diagnosis.

Recently, deep learning model CNN has gained much
popularity due to its high accuracy, great power, and flex-
ibility. Deep features have been applied to the classification
of microcalcification clusters. Becker et al. [16] showed that
current state-of-the-art networks for general image analysis
could detect cancer in mammographies with similar accu-
racy to radiologists. (is motivated us to explore deep
learning as the basic framework for the classification of
microcalcification. In [17], the authors presented an auto-
mated CAD system with minimal user intervention that can
detect, segment, and classify breast masses from mammo-
grams. In addition, there are many methods which rely on
combining different information. For example, the study in
[18] introduced a novel system that integrates several
modules including a breast segmentation module and a
fibroglandular tissue segmentation module into a modified
cascaded region-based convolutional network. (e study of
Jiao et al. [19] is closely related to our work. (e authors
designed a deep feature-based framework combining in-
tensity information and deep features automatically
extracted by the trained CNN. In [20], deep learning was
used for the discrimination of breast cancer with micro-
calcifications. Inspired by Faster-RCNN, Ren et al. and Ribli
et al. [21, 22] proposed a CAD system which achieved the
state-of-the-art classification performance on the public
INbreast [23] database. Similarly, we fine tuned the model
through transfer learning to overcome the problem of
overfitting. In [24], the authors developed a context-sensitive
deep neural network (DNN) for microcalcification de-
tection. In this paper, we explored the ideas above, i.e., the
deep learning model and the combination of different
information.

3. Materials and Methodology

3.1. Dataset. (e datasets were collected at two medical
institutions, the Sun Yat-Sen University Cancer Center
(SYSUCC) and Nanhai Affiliated Hospital of Southern
Medical University (Foshan, China). (ere are 749 samples
collected from SYSUCC, and the remaining 241 samples are
from Nanhai Affiliated Hospital of Southern Medical Uni-
versity. During the learning process, the two datasets were
mixed to enhance the robustness of the prognostic of the
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model. (e datasets consist of 990 images (types: full-field
digital mammography, resolution: 1912× 2294, bit-depth: 8)
from 328 breast lesion cases (age 21–73 years, mean
45 years). Within the lesion images, 540 images presented
malignant masses and 450 were benign lesions, as proved
histopathologically by biopsy. Table 1 shows the number of
mammograms for all eight types of malignant pathologies
and six different benign pathologies. In Figure 1, we illus-
trate some examples of malignant and benign lesions.
Considering the limited data, we add simple rotation
(0°, 45°, 90°, and 135°) to the ROIs attained by segmen-
tation as data augmentation. (us, of the 990 images, 3564
ROIs from 891 images were used as the training set and 99
ROIs from 99 images (45 benign and 54 malignant) as the
test set, as shown in Table 2.

3.2. Methods. Our method consists of three major steps. In
the first step, the suspicious region of interested calcification
(ROIC) area was extracted by an automatic image pre-
processing method. In the second step, radiomics feature
was learned both by handcrafted [25] and fine-tunied
pretrained CNN model. (e handcrafted features include
the first-order statistical, morphological, and texture fea-
tures. Finally, various classifiers were trained and evaluated
by using benchmark support vector machine (SVM) model
based on the deep features, handcrafted features, combined
features, and filtered features individually. A schematic
diagram of the proposed method is illustrated in Figure 2.

3.2.1. ROIC Extraction. (e ROI extraction aims to stan-
dardize the mammographic images and extract calcification
areas as regions of interest. To make full use of all in-
formation of regions withMCs, we extracted the ROI using a
coarse segmentation scheme. We firstly applied morpho-
logical erosion to a structure element radius of 100 pixels to
remove the pixels close to the breast outline. (en a mor-
phological top-hat filtering with a ball structural element
with a radius of 8 and a height of 100 pixels was applied. (e
resulting grayscale image was converted into a binary image
by Otsu thresholding [26]. (e binary image was finally
dilated with a disk-shaped structural element with a radius of
100 pixels, and the maximum connect region was considered
as the calcification area. An illustrative example is shown in
Figure 3. (e most calcification areas can be accurately
segmented, as shown in Figure 4.

3.2.2. Deep Feature Extraction. We built a deep CNN
framework to extract the deep features. (e proposed
framework was similar to an early successfully tested
network, which was designed for nature image recognition
[27]. (e proposed CNN architecture employed the same 5
convolutional layers AlexNet as the base structure for
tuning feature representation. It comprises five convolu-
tional layers of {96, 256, 384, 384, 256} with a kernel size of
{11, 5, 3, 3, 4}, respectively. Each convolutional layer in the
network consists of a number of convolution filters and
rectified linear unit activation. (ree max-pooling layers

are, respectively, constructed to follow the two previous
and the last convolutional layers to reduce data dimension.
With the help of multiple layer architecture and drop-out
strategy to alleviate the overfitting, the network can obtain
robust and spatial invariant features. Note that we did not
adopt a deeper architecture because our preliminary ex-
periments using 16 layers [28] were less satisfactory than
the AlexNet-like architecture [27] used in the present
study. (e deeper architecture was pruned to result in
overfitting.

In a further cautious step to overcome the problem of
overfitting, we borrowed the “off-the-shelf” model from
ImageNet [29] and fine-tuned it through transfer learning
for our purpose. Although there are huge disparities between
medical images and natural images, CNN was trained on the
large-scale ImageNet [29], which has the capacity to describe
the outline and other details, was transferred to make our
task more effective.

To extract the feature representation by CNN, the tested
images were propagated through the CNN. (e resultant
penultimate layer activations of the whole network were
used as feature representations by the CNN.

3.2.3. Handcrafted Feature Extraction. (e majority of the
traditional prognostic systems rely on accurate manual
calculations to determine microcalcification (MC) features.
Popular radiomics features including statistical measure-
ments in the ROI, such as spatial and textural features
[20, 30–32], morphological features, and textural features
have been reported to have the best performance for mass
classification. In our study, 200 morphological features were
computed from the binary lesion shape, and 352 texture
features were extracted from the segmented ROI image. (e
names of each quantitative descriptors and their respective
computational technique are summarized in the supple-
mentary available (here).

3.2.4. Canonical Correlation Analysis to Fuse Both Hand-
crafted and Deep Features. We used canonical correlation

Table 1: Number of mammograms with malignant and benign
pathologies.

Pathology types Sample size
Malignant 540
Ductal carcinoma in situ 194
Invasive ductal carcinoma (IDC) 145
Invasive lobular carcinoma (ILC) 5
Breast adenopathy 162
Ductal carcinoma in situ with microinvasion 22
Ductal carcinoma in situ with localized infiltration 5
Mixed types 16
Invasive carcinoma 11
Benign 450
Fibrocystic mastopathy 297
Inflammation 58
Fibroadenoma 58
Benign lesion for follow-up 14
Benign phyllodes tumor 23
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analysis (CCA) [33] to fuse both the obtained CNN features
and the handcrafted features. (e primary purpose of CCA
is to exploit the merits of both feature types, thus enhancing
the diagnostic performances.

Mathematically, X ∈ Rp×n is the representation of deep
feature and Y ∈ Rq×n can be one or all of the handcraft
descriptors. (e CCA aimed at finding linear weighting
vectors wX, wY to maximize the pair-wise correlations across
the two data sets:

max
wX,wY

corr X∗, Y∗( ) �
cov X∗, Y∗( )

var X∗( )∗ var Y∗( )
,

subject to var X∗( ) � 1,

var Y∗( ) � 1,

(1)

where X∗ � wT
xX and Y∗ � wT

yY.

Once the weighting vector of first canonical variate pair
was obtained, we retained the deep features that top 10% high
coefficients in weighting vector correspond to. (e filtered
deep features have high correlations with handcrafted features.

3.3.PrognosticClassifiersBuilding. (roughout our study, the
support vector machine (SVM) model was borrowed as a base
classifier to evaluate the diagnostic performance of the features.
(e SVM model has been widely used as a benchmark model
for image classification [34, 35]. (e basic idea of the SVM
model is to maximize a linear hyperplane spanned by samples
in support positions. (e hyperparameters used in the SVM
were fine-tuned to obtain the best performance. For the SVM
classifier, RBF (radial basis function) kernel function was used.

Several popular quantitative measurements were used to
quantify the classification performances. (e measurements
included accuracy, precision, sensitivity, and specificity,
defined as

(a) (b) (c)

(d) (e) (f )

Figure 1: Examples of malignant and benign lesions. (a)–(c) Images showingmalignant lesions, including ductal carcinoma in situ, invasive
ductal carcinoma, and mixed type. (d)–(f) Images showing benign lesions, including a benign lesion after follow-up, inflammation, and
fibrocystic mastopathy.

Table 2: Overview of the number of images.

Training images Augmented training images Test images
Benign 405 1620 45
Malignant 486 1944 54
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accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

sensitivity �
TP

TP + FN
,

specificity �
TN

TN + FP
,

(2)

where true positive (TP) was the number of malignant
samples that were correctly classified and true negative (TN)
was the number of nonmalignant samples that were cor-
rectly classified into benign. (e false-positive (FP) and
false-negative (FN) values were defined similarly. Except for
those measurements mentioned above, we also adopt the
area under the ROC curve (AUC) as the measurement.

4. Experiment Methodology

(e Caffe framework [36] was employed to build and fine-
tune the network in our experiment. Since the trained model

Extraction

Segmentation

Traditional
descriptors

Candidate
selection

Coarse
thresholding

Original
mammograph

Resize

CNN features

Guide

Malignant?

Figure 2: Workflow diagram for the classification of MCs. (e calcification areas of interest were first detected and then characterized by
both deep learning and traditional manual descriptors. (e results from the two feature types were evaluated and compared independently.
To enhance the diagnostic performances, the two feature types were further combined or filtered to accomplish a complete characterization
of the MCs.

Original
mammograph

Tophat
operation

OSTU
thresholding

Dilation
operation

Candidate
selection

Coarse segmention ROI abstraction

Figure 3: Workflow diagram for ROI extraction. A coarse segmentation scheme was performed using traditional morphological filters.
(en the locations showing the most MCs were used for ROI extraction.
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in ImageNet by AlexNet was designed for nature images
with three channels, the mammography samples in our
study were converted into three channels by copying
grayscale to each channel. All CNN layers except the last and
the penultimate layer were inherited from the trained model
in AlexNet for fine-tuning. (e learning rate in the training
stage was initialized at 0.01 and the training stage continued
for 300 epochs. Once the transfer learning process was
completed, the neurons in the penultimate layer of the whole
network were extracted as representative features for the
tested mammographic images. (e model was trained and
tested using 10-fold cross validation on the dataset. (e
parameters (i.e., learning rate, batch size, and epochs) were
fine-tuned in each round of the cross validation.

5. Experimental Results

(e classification performances of MCs are summarized in
Table 3. (e table provides the average and the standard
deviation for different measurement indexes. Compared
with the manual features, the CNN features achieved su-
perior performance in terms of both accuracy and sensi-
tivity. (e diagnostic accuracy for CNN was 0.8768
compared with 0.8667 for manual features. In addition, the
combined features and filtered features outperform CNN
features. Most significantly, the filtered feature can improve
the classification more than CNN feature, which implies that

the CNN feature is not the most perfect for classification and
it can perform better by combining the conventional feature
or being filtered by conventional feature. Compared with the
simple combination, the performance of the proposed CCA
scheme obtained better diagnostic power from AUC
(0.9398± 0.0242 versus 0.9379± 0.0237). Morphological
features contribute the most among all the conventional
features.(e CNN feature filtered by morphological features
obtained the highest accuracy (0.8859± 0.0363). We also
performed the whole experiment based on different distri-
butions of data to explore the impact of them. (e obtained
experimental results demonstrate that the superior perfor-
mance of distribution for training and testing data is 90%
and 10% compared with other distributions, as summarized
in Table 4.

For an easy comparison of the proposed method, we
have cited the experimental results obtained by four different
techniques on another mammography dataset, BreaKHis, as
shown in Table 5. (e reported accuracies ranged from
83.3% to 99.4%.We did not apply our method on the dataset
since it contains few mammographies with calcifications.

We employed t-distributed stochastic neighbor em-
bedding (t-SNE) [41] to visualize different feature sets by
locating each sample in a two-dimensional map in Figure 5.
(emanual features are distributed unevenly, thus making it
challenging to separate as shown in Figure 5(a). (e dis-
tribution of the filtered features and CNN features improved

(a) (b)

(c) (d)

Figure 4: Experimental results on calcification extraction.
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dramatically as shown in Figure 5(b). Both the benign and
malignant samples were clearly separable, yet several sam-
ples were still misclassified in Figure 5(c).

To further investigate the clinical value of deep features,
the detected highly sensitive region found by the neurons
were further visualized [42]. We get the neurons with a
strong association with traditional radiomics and the neu-
rons with the largest weight of malignant output from the
penultimate layer of the whole network. It replicates each
ROI many times with small occludes at different locations in
the ROI. (en, we feed all of them to the trained network
and record the change for the neuron mentioned above. (e
discrepancy is positively related to the significance of the
given patch. As shown in Figure 6, the neurons with a strong

association with traditional radiomics (the second and third
rows) basically catch the region of MCs. However, it seems
that the neurons with the largest weight of malignant output
(the fourth and fifth rows) catch the spicule and the lobu-
lation. It is obvious that these features play an important role
in diagnosis, but they do not belong to the features of
calcification.

6. Conclusions

In this study, we have made advances toward the end-to-end
training of a deep CNN for microcalcification discrimina-
tion for breast cancer screening. (e images were collected
from two distinct medical institutions. We demonstrated

Table 3: Comparison of performance for MC classification on different sets of features.

Method Accuracy Precision Specificity AUC Sensitivity
CNN 0.8768± 0.0431 0.8891± 0.0349 0.8667± 0.0457 0.9336± 0.0238 0.8701± 0.0144
Morphological 0.8525± 0.0203 0.8624± 0.0267 0.8311± 0.0471 0.9256± 0.0211 0.8492± 0.0246
CNN+morphological 0.8828± 0.0437 0.8911± 0.0447 0.8667± 0.0602 0.9385± 0.0238 0.8761± 0.0104
CNN filtered by morphologic 0.8859 ± 0.0363 0.8932 ± 0.0384 0.8689 ± 0.0528 0.9392± 0.0240 0.8843 ± 0.0344
Textural 0.7677± 0.0634 0.7964± 0.0659 0.7511± 0.0924 0.8721± 0.0530 0.7703± 0.0544
CNN+ textural 0.8727± 0.0500 0.8853± 0.0410 0.8622± 0.0522 0.9338± 0.0248 0.8801± 0.0434
CNN filtered by textural 0.8747± 0.0387 0.8842± 0.0423 0.8578± 0.0603 0.9434 ± 0.0220 0.8831± 0.0276
Morphological + textural 0.8667± 0.0223 0.8768± 0.0309 0.8489± 0.0511 0.9381± 0.0219 0.8601± 0.0251
CNN+morphological + textural 0.8818± 0.0434 0.8895± 0.0457 0.8644± 0.0624 0.9379± 0.0237 0.8791± 0.0124
CNN filtered by morphological + textural 0.8747± 0.0376 0.8873± 0.0238 0.8644± 0.0339 0.9398± 0.0242 0.8751± 0.0328

Table 4: Performance comparisons under various cross-validation ratio.

90% vs 10% 80% vs 20% 75% vs 25%
Accuracy 0.818 0.791 0.777
Precision 0.865 0.834 0.829
AUC 0.820 0.792 0.780

Table 5: Comparison of performances on other models reported early.

Method Dataset Accuracy (%)
L-ISOMAP+ SSAE [37] BreaKHis 99.4
Deep features +CNN [38] BreaKHis 83.3
CSDCNN [39] BreaKHis 94.9
Grassmannian +VLAD [40] BreaKHis 90.5

(a) (b) (c)

Figure 5: (a–c) t-SNE maps of handcrafted features, deep features filtered by handcrafted features, and deep features. (e benign and
malignant samples are highlighted in red and green, respectively. (e filtered features and deep features are largely categorized into two
clusters.
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that it is essential to perform feature selection for deep
features with the help of manual features. To compare
traditional methods using the same standard, we employed
our trained model to extract deep features and verified the
capacity for deep CNN to capture similar characteristics to
that of manual features. Our results showed that CNN is
powerful enough to discriminate microcalcification. Fur-
thermore, our proposed method verified that traditional
morphological features could be useful to guide CNN fea-
tures to achieve higher accuracy for classification of MCs.

In the current study, the ROI extraction was done by using
an automatic processing method. In [43], the authors in-
troduced a mass detection model based on RetinaNet [44],
which is a state-of-the-art one-stage object detector. (e ex-
perimental evaluation suggests that the model could be used in

different patient groups. Indeed, our experimental results
showed that the traditional ROI region extraction method had
its weaknesses. (erefore, we will consider the ROI region
extraction and lesion classification to be automatically
implemented by the CNN method in the future work.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.
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